
Advanced Kinetic Modelling による寿命推定 

寿命推定 シミュレーション・ソフトウエア 
    AKTS/TKsd  Version_7.0    発行 2025_08_20 更新 

 1：はじめに  AKTS/TKsd はポリマー材料、高エネルギー物質・医薬品などの測定サンプルを恒温槽に

収納し、加速試験を実施します。加速試験データは測定サンプルに含まれる特定物質の残存濃度や,引張り

試験による破断強度データ などのさまざまな加速試験データがあります。これらの限定された,数少ない実測

データを使って,反応モデル式を探索し、さまざまな温度・時間スケールで寿命推定することができます。 今回、

機能強化されたTKsd_V7は、先進的動力学モデリング(Advanced Kinetic Modelling)ツールとして

整合性のある反応モデル式を選定します。さらに得られたモデル式と実測データから,妥当性のある予測バンドを

算出することにより、堅牢な寿命予測を可能としています。 

恒温槽による加速劣化試験 

加速試験サンプルのHPLC分析 

高速液体クロマトグラフィ 
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恒温槽（等温条件） 

 加速試験による数少ない実測データから、数年あるいは10年先の寿命や劣化

を正しく予測するためには？ TKsdソフトウエアが役に立ちます。 

 

なおTKsd ソフトウエアは Ver.6.04以前とVersion7.0以降で機能・仕様

に大きな違いがあります。 

保管温度5℃で 10年先はどうなるか？ 

Thermostatic oven 等温加速試験条件における濃度・時間曲線 

 

 

 
Iso_45℃ 

Iso_37℃ 

Iso_25℃ 

Iso_5℃ 



3：加速試験 

医薬品製剤の安全性評価と 

Fig-02は5℃～45℃まで10℃ステップの5段階で加速試験を

行い、試料検体中の化学物質Aの濃度データをHPLCにより得て 

等温加速条件ごとにプロットしたものです。それぞれの温度で収集

された濃度データは、各等水準で5～6点を越えない“数少ない”

データ点数です。 

 

劣化反応プロセスのモデル式とは？ 
 

Fig-02で示した劣化プロセスはn次式反応モデルです。もちろん

曲線を見ただけで反応式が判断できる訳ではありません。  

寿命予測する場合,予め反応モデルが判明していることは少なく,

ある反応モデルを仮定し,測定データにフィットする反応近似式を

求めるのが普通です。反応近似式は得られのですが、ベースとな

る反応式はあくまで“経験的”に仮定されたものです。 

医薬品の医薬製剤は数年間におよぶ長期保存安定性が要求されます。また武器弾薬類も長期間貯蔵されるため、推進

薬や火薬では安全管理の上で寿命評価が必要となります。いずれも室温環境や気候温度条件下で10年あるいは数10

年先の寿命評価が要求されます。 

  2：寿命推定 
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寿命推定手順は、Fig-01のように 

 

①異なる等温条件50～100℃の範囲

で、T1,T2,T3における加速試験を行い

ます。 

 

②時間経過に伴う濃度変化データにより

劣化プロセスの反応速度が得られます。

このデータを使って,Kineticパラメータを

算出します。 

Fig-02: n次式の劣化反応プロセスの例  

  

Fig-01：加速試験による劣化試験データの解析評価手順 

加速試験時間：        単位 month 

Page 2 加速試験データ 

                      医薬品分野では、小分子から生物由来製剤まで、製品形態やリスクに応じて寿命推定の              

ニーズが極めて高くなります。とくに以下の領域で安定性評価・寿命予測が不可欠です。 

小分子注射液は、pH依存性の加水分解や酸化反応が進行しやすく、とくにバイアルやプレフィ

ルドシリンジの容器閉鎖系統(CCIT)影響を評価することが必要です。 

凍結乾燥品は再構成後の安定性も含める必要があります。 
 

● バイオ医薬品は、一次構造はもちろん二次・三次・四次構造の維持が必須です。 

タンパク凝集や吸着による免疫原性リスクを避けるため、凍結乾燥／液状いずれも高次構造

解析（DSC、CD、SEC-MALS等）を施し、実時間保存データで寿命モデルを構築します。 
 

• 液体注射用バイオ剤では、低温保管（2～8 ℃)下での長期保存が一般的です。  

輸送時の一過性温度上昇（コールドチェーン逸脱）時のシミュレーションや、サブビジブル    

                    粒子の増加予測が寿命推定に直結します。 



4：ｎ次反応と自触媒反応のモデル化 

一般に劣化分解の反応モデルは０次またはｎ次反応

および自触媒反応モデルが想定されます。 
 

Fig-03 の上図はｎ次の反応率曲線、下図は自触

媒反応速度曲線です。ｎ次反応は反応初期が最も

反応速度が大きく、その後指数関数的に減衰します。

一方、自触媒反応は反応速度が最大になるまでにあ

る誘導時間を持ち、温度が低ければ低いほど誘導時

間は長くなります。 
 

化学物質の室温付近における分解反応はｎ次反応

であるか自触媒反応のいずれかという単純なものでは

ありません。 

 一方、劣化プロセスの対象物質の濃度データは、

Fig-02の例のように反応率曲線上にある非連続的な

わずか数点～10点の測定データに限定されるのが普

通です。 

そのため劣化プロセス反応の単純な反応モデルを想定

して,測定データをカーブフィッティングして、寿命予測す

ることが一般的でした。 
 

しかし信頼性のある寿命推定をするには、いくつかの想

定される反応モデルを設定して、どの反応モデルが正し

いのか？を判断する必要があります。 

Fig-03: ｎ次反応モデル 

Fig-04: 自触媒反応モデル 
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Page 3 Ｓ字アプローチによるｎ次反応,自触媒反応のモデル化 

 Fig-04に示すように加速試験温度条件による“ある

化学物質A”の濃度変化を示すHPLCデータが得られ

たとします。 

等温条件によるある時間ｔにおける熱劣化の反応率

αは下記の式で与えられます。 

 

 

ここで f（α）は 劣化プロセスの反応式です。 

測定データAの劣化プロセスの反応モデルはどのような

反応式を想定すれば良いのでしょうか？ 
 

AKTSはSモデルアプローチを採用しました。 

 

このf（α）を                     

 

とし、n,m の値を設定することにより Fig-07のような

さまざまな反応式についてモデルフィッティングすることが

可能になります。 

 

S字(Sigmoid)状の反応率曲線とは,Fig-03,04の

自触媒特性を持つ反応率曲線と云えます。 
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Fig-05 物質Bの加速試験データ。 

劣化プロセス反応が自触媒反応と推定される測定例 

S字モデルのn,mがそれぞれ1に相当する反応式です。 

加速試験時間：        単位 month 

A 



Page 4 AIC-BIC規準を採用した加速試験データによる寿命推定 

5: S字モデルとは 

S 字形状モデルとは  

Review ; ICTAC Kinetics Committee recommendations for 

performing kinetic computations on  thermal analysis data の 

Fig. 1 より引用 
 

時間に対する反応プロファイルの特性は ① ② ③のタイプがあります。 
 

①  Accelerating, （加速型） 反応速度が時間とともに増加する反応 

②  Decelerating,（減速型） 反応速度が時間とともに減少する反応 

③ Sigmoidal models  (S字形のモデル） ①と②の特性を持つ反応 
 

この加速型と減速型の特長を併せ持つSigmoid状(S 字型）の反応を

AKTS社ではS字状モデルと呼称し、この反応式を f（α）とします。 

 

 f（α）＝                     とします。 

 

   S字モデルはさまざまなn,m の組合せを設定することにより、Fig-07に示す

さまざまな反応式を表現することができます。 
 

さまざまな基本モデル式を着せ替え人形に例えると、基本モデル式ごとにn,m 

の数字を着せ替えて,数100通りのモデル式について予測値と実測値を計算

します。フィッティングする度合いをRSS(残差平方和および変動パラメータの

大小を含めたAIC-BIC基準の指標を使って、妥当性のあるモデル式をスコア

評点して、確度の高いスコア順にモデル式を表示してくれます。 
 

さまざまな基本モデル式に対して、さまざまなn,mの数値を組合せながら計算

するので、膨大な計算量となりますが、現代のパソコンの計算能力をもってす

れば、可能です。 

なおAIC-BICとは,統計手法の赤池情報量規準とベイジアン情報量規準を

指しています。（AIC-BIC Criteria) と呼称されています。 

Fig-06：加速・減速・S字型の反応進行 

 

 

Table_01：n,mの数値で表現されるS次式アプローチの基本モデル

S次式アプローチの回帰計算は

膨大なモデル式が対象です。 



 

Page 5 AIC＋BIC基準によるモデル式の判定 

6：AICとBIC基準 によるモデル式の判定とは  ステージ1～5で判定します。 

Fig-07 

ステージ 1. データ点数の定義 

•      観測した実験データの総数 n を明確にします。 

ステージ 2. フィッティングパラメータ数の定義 

•      最適化で推定する自由パラメータの数 k を数えます。既知定数は含めません。 

ステージ 3. 初期値設定と非線形回帰による最適化 

•      各パラメータに対して初期推定値を与えます。 

•      適切な最適化アルゴリズムを用いてパラメータを更新しながら収束条件を満たすまで反復 

ステージ 4. 残差二乗和（RSS）の計算 

•      各実験データ点とモデル曲線の垂直距離を二乗し，合計します： 

ステージ 5. AIC/BICの算出と重み(w)の計算   AIC:予測性能重視、罰則は 2k  BIC:真モデル仮定、罰則は k/ln n 

•      k：自由パラメータ数 n：データ点数 

•       w_indexが大きいほど，「最良モデルである相対的な確率」が高いと解釈されます。 
 

  下図Fig＿08とFig_09について One-step-model とTwo-steps-model について比較して評点して見てください。 

Fig-08 

Remarks: 

AIC wと＋BIC w の合計値の

0.975と0.025の差はあまりに 

圧倒的です。 

理屈抜きで、1段階モデルを選択

することになります。また2ステージ

のJ=4とJ=8のモデル式のパラ

メータの数が4対8です。もしW値

が近い値の場合はJ＝4 を採択

します。モデル式がシンプルで、W

値が1に近い1段階モデルが絶対

的に採択されます。 

Remarks： 

AIC wと＋BIC w の合計値の

0.975と1 では差がほぼなしと

云えます。RSSも0.004と同じで

す。2ステージのJ値が4と8になっ

ています。 モデル式のパラメータ

が4個の1段階反応とパラメータ

が8個の2段階反応です。 

この場合は1段階モデルの採択も

正しい判定かもしれません。 

  判定の採択は操作する本人が

最終決定をします。 

Fig_08に示したデータのKinetic解析と,Table_03に示したAICおよびBIC基準の評価結果から,本実験データ点群はパラメータ

wの値が1となる２段階モデルによって,1段階モデルより わずかにフィットしています。 

 

  加速試験データのように不連続なデータ収集の場合、データポイントの数は一般に制限されており、さらに、実験エラーが含まれて

いる可能性があります。これらの制限を考慮すると,より複雑なモデルでは,より小さなRSSを達成するためには、モデル式のパラメータ

数を増やすことで柔軟性を高める必要があります。ただし、実測データ点が限られている場合、過剰適合のリスクがあるため、モデルの

複雑性とデータ量のバランスを慎重に検討する必要があります。 

Table_03 

Table_02 

Fig_08に示した実測データ点をTK-sdソフトウェアで解析したところ,Table_02に示すAICおよびBIC規準の結果から，1段階

モデルによる動力学フィットが最適であることを示しています。（1段階モデルと2段階モデルのw値に顕著な差がある点に注目）



7：Boot strap法による信頼区間計算 

 Fig-09の赤色印は単一ベースの推進薬に含ま

れる安定化剤1,1-Diphenylureaについて,40℃ 

から80℃までの加速試験による残存濃度データで

す。168日間で得られた20個の実験データから

AIC-BIC基準により反応モデルを判定しました。 
  
 
 

 

 

 

 

Page 6 ブートストラップ法による予測バンド95％の算出 

40℃252日の予測値を検証 

Fig-09：推進薬1,1-Diphenylureaの40~80℃加速試験結果 

Table-04：AIC-BIC規準によるモデル式の判定 

1,1-Diphenylurea 

Fig-10：推進薬1,1-Diphenylureaの40℃~80℃加速試験結果 

40,50,60℃・252日加速試験の検証データは予測バンド95％の範囲

にあり、モデル式の妥当性を示しています。 

  Model 式1 Model式2 

1 N 20 20 

2 J 4 8 

3 
 
 
 
 
 
 
 

A1 
E 
n1 
M1 
A2 
E 
n2 
M2 
Ｙ 
Ｙ_ini 

1.39E+11 
119.6 
0.661 

0 
 
 
 
 

1.1 
0 

9.02E+10 
111.7 
2.186 

 
1.33E+14 

132.7 
1.822 
2.983 
1.111 

0 

4 RSS 0.004 0.001 

5 ｗ 0.852 0.148 

Table-04は,モデル式1とモデル式2を比較しています。 

予測誤差を示すRSS値はともに0.004,0.001と大きな差はありま

せん。回帰母数wは0.852と0.148であり、モデル式はモデル式1

であると判定されます。 
 

ちなみにモデル式のパラメータは 

 活性化エネルギーΔEは119.6ｋJ/mol、  

 前指数因子A＝1.39E+11 

 反応次数 n1=0.661 ｍ1＝0 

m＝0は自触媒反応の特性/無を示します。  

このモデル式にて寿命推定曲線 Fig_10が作成されます。 
 

この寿命推定曲線が正しいのかを検証するために加速試験252日

後における40, 50, 60℃の測定データを推定曲線上にプロットし

ています。寿命推定曲線が検証されると,40℃加速条件における 

5～10年の長期間後の残存濃度曲線を検討することができます。 

推定曲線には誤差がありますが,予測バンド95%をブートストラップ

で計算し，予測範囲がどうなっているかを計算します。 

予測バンド（Prediction Band）とは 

AIC-BIC法でFitting計算で得られたモデル式に

基づき、新たに観測される個々のデータ点がある

確率で収まる範囲を指します。 

PB95％のカバー率の解釈は 

• モデル前提(正規性,等分散性,独立性)が成

立している限り,各新規の実測値が予測バンド内

に入る確率は95％です。 
 

• ただし、偶然や外れ値で外れる約5％のケース

も存在します。 
 

この予測区間は、モデルの平均応答を推定する

際の不確実性だけでなく、個々の観測値に伴うラ

ンダムなバラツキも考慮しているため、信頼区間

よりも幅が広くなります。 

 



 AKTS/TKsd・Version7はとくにバイオ医薬品・ワクチン

などの分野からのニーズに対応すべく、とくに⑤の計算機能

が強化されています。 この結果、客観性・妥当性のある

堅牢な寿命予測が可能になっています。 

Page 7 AIC-BIC基準を採用した加速試験データによるモデル式の検索と予測バンドの算出 

加速試験サンプルから濃度,劣化特性データの収集 

① TKsdソフトウエアに時間,濃度データを入力 

② Kinetic解析を選択し、Step1＋Step2の    

  2段階反応を選択して・自動計算をスタート 

③ モデル式の予測値と実測値のRSS と 

（AIC+BIC)ｗ％からモデル式のスコアを評点 

④ AIC+BIC基準によりモデル式を判定 

⑤ 判定されたモデル式について 

  ブートストラップ法による予測バンド95％算出 

  実測データと予測信頼区間の関係を点検 

⑥バリデーション・データによる寿命予測の検証 

⑦ 室温環境、気象環境による寿命推定 

8：寿命推定計算の７ステップ 

数少ない加速試験のHPLCデータから5,10年先の寿命を

高精度で予測するには,下記5点の必要条件があります。 

 

A:初期濃度および終点濃度が特定できればモデル式探索

精度が向上(Fitting計算のパラメータが2点減少します。) 
   

B:高温加速領域で広範囲の濃度変化幅が得られること。 

（室温付近、あるいは低温の加速試験データの濃度変化

範囲は少ないのが普通です。） 
 

C:加速試験の等温条件が最低3水準以上あること。 

  温度水準の数が多いほど予測精度が向上します。 
 

D:測定データが複数個ある場合は,平均化せずに単独

データとして取り扱うこと。 
 

E:検証用の実測データとして寿命推定したい温度環境で

の加速試験の実測値を採取すること 

Fig-10で示した推進薬1,1-Diphenylureaの残存

濃度シミュレーションは12カ月間スケールです。青色の

データ●の3点は242日間後の加速試験による検証

データです。この検証用データ3点は予測バンド95％

の予測範囲内に収まっています。 

青色破線でマークされた予測バンド (PB95%))は、

ブートストラップ法によって決定されました。 

 

Fig-11の予測時間スケールは10年間ですPB95％ 

曲線は予測期間が長くなればなるほど,安定剤濃度

の幅が拡大します。 事例の実測データのように測定

精度が良ければ,10年後に実測したデータの95％が

予測バンドに収まることを示しています。 

Fig-11:推進薬・安定剤1,1-Diphenylureaの濃度曲線(予測バンド95％） 

従来の寿命推定法となにか違うの？ 

9：寿命曲線の予測バンド 

TKsd_7ではBootstrap機能が強化されています。 

Bootstrapは観測データから再標本化(resampling)を繰り返し行うことで,統計量の分布や不確実性を 

評価する非パラメトリック手法です。とくに加速試験データのようにサンプル数が限られる場合に有効です。 

Bootstrapにより算出した95％予測バンドと検証データの間に妥当性があればモデル式の有効性が確認 

できます。逆にブートストラップにより堅牢な予測バンド95％に対しても,検証データが区間外になることもあり 

得ます。このような場合,モデル式の仮定、ブートストラップ手法の適用条件が適切でないという判断材料を 

与えてくれます。 

数少ない実測データでブートストラップが便利な機能であることを体験されることを期待しています。 
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このリーフレットは,先進的動力学モデリングのTKsdソフトウエアがどのような原理で

寿命推定をしているか？について説明しています。 

お客様が課題とする測定サンプルを寿命推定したら、どのような結果になるか？ 

お客様から加速試験の実測データを提供していただければ,AKMのTKsd_7による

保存時間シミュレーションを行い、解析結果を報告をすることができます。 

どのような実測データが必要になるか？についてはinfo@palmetrics.co.jpまで，

メールでお問い合わせください。 
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STP PHARMA PRATIQUES | n°04 - JULY/AUGUST 2020 によればAKMを使用している著者は以下のように述べています。 
 

モデル式による保管条件のシミュレーションにより、この実験的ワクチンの熱感受性の評価が可能となり、適切な保存条件として  

冷蔵室を使用することが正当化されました。 これらのモデル式は、反応の進行をフィッティングするために適用される現象論的数学モ

デルを示しているに過ぎません。AKMによる動的モデルは、任意の時間・温度条件下で製品の劣化度を予測でき、劣化メカニズム

の詳細情報を必要としないという点を強調すべきです。 
 

従来，製品劣化を予測するには化学/物理プロセスの詳細な知見（酸化反応速度式や拡散係数など）が必要でした。      

しかし，AKM動的モデルは次の理由で劣化メカニズムの情報を前提としません。 

●  実測データをもとに経験的にパラメータ推定を行うため，事前知識が少なくても定量化が可能です。 

●  反応経路や中間生成物などを仮定せず，観測される実測データにより劣化現象そのものをモデル化しています。 

 

 TKsd_7が市場開発中の応用分野はバイオ医薬品やバイオワクチンなどの生物医薬品です。加速試験の温度環境も5℃付近と

なり、実測データの濃度変化も非常に緩慢になります。この結果、実測値から得られたモデル式は,環境温度5℃における予測バンド

95％の幅が広くなるので、加速データ試験にはデータ採取の戦略も必要になります。ブートストアップ処理により、堅牢な寿命推定

曲線を得て、より高精度な予測バンドとする方針も垣間見えてくると思います。 
 

TKsd_7を使いこなすには、このリーフレットの内容は基礎編であり、実測データでTKsd_7を操作して、予測バンド95％を得るところ

からスタートすることになります。 

 

応用事例としてTKsd_7・テクニカル・ノートを発行します。これらのPDFファイルは当社のWebsiteから ダウンロードできます。 

 

TKsd_7_No.1：STP PHARMA PRATIQUES | n°04 の和文版   

           TKsd_7・ユーザーが投稿したレポートを和訳しています。 

           バイオ医薬品関連の応用事例として興味深い記事です。 

           

TKsd_7_No.2：実測値の数,加速試験期間と予測バンド95％の区間の関係 

           Bootstrap計算による堅牢な予測バンド95%精度を向上させ、 

           かつ検証用データが予測バンド95の区間に入るようにするための戦略とは？ 


