

Introduction to Migration Modelling

オプション機能 Fitting_module Part3

等温条件1水準(例 40℃_4daysと10days)の溶出量実測データ 3点(初期濃度0を含む) から40℃の拡散係数と分配係数を求める。

SML6.61_Fitting_Module_操作マニュアル

2023_07_02 Version1.2 Polmetrics

✓ Package 1 L. ■ Article 1	Article Creation Wizard Close Wizard I. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction Next Step Next Step Surface: 600 (cm2)	Package 1
	Surface (cm^2) 600	Wildth (cm): 10 Height (cm): 10 Length (cm): 10 Surface and mass of contact medium by article
	Concentration Diffusion Coefficient Partition Coefficient Sol Set-Off Add Migrant(s) Add Migrant(s) Set-Off Image: Set Concentration Image: Set Concentration Set Concentration Image: Set Concentration Image: Set Concentration Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration Image: Set Concentration	Articles Surfaces (cm^2) Mass (g) Article 1 600
		Total surface of all articles (cm^2): 600 Switch Package in Fitting Mode

02: Layerの数を定義 通常はポリマー層が単層 第1層はポリマー層、第2	層なら2を入力 層は食品疑似溶媒(Simulant)	
🚮 Add Layer(s)	×	
Number of layer(s) to add:	2	
	🖌 OK 🛛 💢 Cancel	

03: 解析スタート: new packageをクリックすると下記の画面が表示される。 最初の操作はPackage1のAraticle1を定義することです。 Layer1とLayer2はNot Define1 Not Define2 と赤字で表示される。	
Surface (cm^2) 600	
Article Layer 1 Layer 2 Not Defined Not Defined Thickness (µ 100 100	
Concentration Diffusion Coefficient Partition Coefficient Sol	
Add Migrant(s)	
🗰 Layer (Layer 2) 🚡 Migrant 💲 Data	
Copy From Reset Layer Laser Defined Database	
Type: Material Contact Medium Thickness (µm): 100 Density (g/cm^3): N/A 	
Palmet	rics

04:	Migrant(s)の数を定義
	Migrantが1個なら 1 を入力する。
	なお Fitting_Moduleで実測値データからDpとKpfを求める場合、migrantは1個のみ定義する。
	複数のMigrantsを定義すると回帰計算が機能しません。

🔜 Add Migrant(s)	×
Number of migrant(s) to add:	
	V OK K Cancel

05: Layerの孝	数、Migrant(s)の数を定義する。 下記の表示はいずれも未定義の状態です。
Package 1	Article Creation Wizard Article Creation Wizard
	Surface (cm^2) 600 Article Layer 1 Layer 2 Not Defined Not Defined Thickness (µ 100 100 Migrant 1 Not Defined 0 0 Concentration Diffusion Coefficient Partition Coefficient Sol Concentration Diffusion Coefficient Partition Coefficient Sol Set-Off Layer Migrant (Migrant 1) Data
6.61	Copy From Reset Migrant Migrant Abbreviation: Migrant 1 Migrant: Not Defined Migrant Details Molecular Weight (g/mol): N/A Melting Point (°C): N/A

06: Layer10 Typeは	DNot Definedをクリックする。 Material (Migrantの化学物質を選択する意味)を選択してDatabaseをクリックする。
Surface (cm^2) 600))
Article Thic Migrant 1 Not	Layer 1 Layer 2 Not Defined Not Defined kness (µ 100 Defined 0
Add Migrant(s)	Concentration Diffusion Coefficient Partition Coefficient Sol Run Prediction er 1) Migrant Data
< > >	< Copy From Reset Layer 🚨 Set to User Defined 📄 Database ^
Type: (Material Contact Medium
Density (g/cm^3):	N/A
Layer Abbreviation:	Layer 1
Material:	Not Defined Y

07: Layer1のNot Definedをクリックする。 Layer1はポリマー層なので データベースのtypeはPOLYMERを選択して 実測データに使用されたLayer1のPolymerのCAS.No.を入力する。

sml					_	
Selecting material	for layers	5				
Browse Database						
Reference Number:	Name:					
CAS Number:	Molecular Weight:					
	Type:	POLYMER	\sim			
		Filte	r			
MasterDB (1938) UserDi	B (1)					
Copy To User Database						
Name	CAS Number	Reference Number	FCM Number	Molecular Weight (g	Density	(g/cm M 🔺
CELLULOSE	0009004-34-6	14500; 43280	553		0.77	
CELLULOSE ACETATE	0009004-35-7	14505				
CELLULOSE ACETATE BUTYRATE	0009004-36-8	43300;14508; 43	554	2944.79		
CELLULOSE ACETATE PROPIONATE	0009004-39-1	14512				
ETHYLCELLULOSE	0009004-57-3	16925; 53280	555		1.07	2
3-HYDROXYBUTANOIC ACID-3-HYDROXYPENTAN	0080181-31-3	18888	744			~
Previous Layer Next Layer				Assig	jn	× Close

08:実測データのPolymerのCAS.No.を入力して、Filter をクリックする。 このポリマーはMaster DBには登録されていないので、予めUser_DBに登録しておく。 MigrantについてもMaster DBに登録されていないときは、User_DBに登録しておく。

sm				—	
Selecting mate	erial for layers				
Browse Database					
Reference Number:	Name:				
CAS Number:	Molecular Weight:				
	Type: I POLYMER	~			
		Filter			
	· · · · · · · · · · · · · · · · · · ·	/			
MasterDB (1938)	UserDB (1)				
MasterDB (1938)	UserDB (1)				
MasterDB (1938) Edit Materials id Name	UserDB (1) CAS Number	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens
MasterDB (1938) Edit Materials id Name 2 <	UserDB (1) CAS Number 147398-31-0	Reference Number	FCM Number	Molecular We	eight (g Dens

09: PoymerをUser_DBに登録する場合、登録する情報は ガラス転移点温度ぐらいのものである。 ポリマー名称を設定するにはMaster_DBあるいはUser_DBに登録されていることが必須です。 MigrantをUser_DBに登録するならば、分子量、Log_Pow値が必須項目です。

sml					_		×
Selecting materi	al for layers	5					
Browse Database							
Reference Number:	Name:						
CAS Number:	Molecular Weight:						
	Type:	POLYMER	\sim				
			Filter				
MasterDB (1938) U	serDB (1)						
Sedit Materials							
id Name	CA	S Number	Reference Number	FCM Number	Molecular V	Veight (g	Dens
2training	14	7398-31-0					
<							>
Previous Laver Next Laver					Assign	Xd	ose

10:User_DBに登録すると定義されていないParameterを入力するようにSML6ソフトが要求しますが、 情報が不明な項目はとくに入力する必要はありません。 赤破線枠のOKのとこが緑色☑になっていれば、とくに枠内に情報を入力する必要はありません。 先の操作に進むには下の赤破線枠のOKがアクティブ(緑色)になることが必要です。

Please enter log Pow Required for Indecular weight not available in the database Required for Please enter log Pow (g/cm^3) Required for Stimation of diffusion coefficient with Brandsch and In-silico Estimation of partition coefficient Please enter log Pow Required for Please enter log Pow Estimation of partition coefficients with Polarity scale Please enter molecular weight (g/mol)
Density not available in the database Required for Please enter density * (g/cm^3) * Density is mandatory for calculation. Default value is 1. Estimation of diffusion coefficient with Brandsch and In-silico Estimation of partition coefficient Log Pow not available in the database Required for Please enter log Pow Estimation of partition coefficients with Polarity scale Molecular weight not available in the database Required for Please enter molecular weight (g/mol)
Please enter density * * Density is mandatory for calculation. Default value is 1. Log Pow not available in the database Please enter log Pow Molecular weight not available in the database Required for Please enter molecular weight (g/mol) Estimation of partition coefficients with Brandsch and In-silico Estimation of partition coefficients with Polarity scale
* Density is mandatory for calculation. Default value is 1. Log Pow not available in the database Required for Please enter log Pow Estimation of partition coefficients with Polarity scale Molecular weight not available in the database Required for Please enter molecular weight (g/mol)
Log Pow not available in the database Required for Please enter log Pow Estimation of partition coefficients with Polarity scale Molecular weight not available in the database Required for Please enter molecular weight (g/mol)
Please enter log Pow Estimation of partition coefficients with Polarity scale Molecular weight not available in the database Required for Please enter molecular weight (g/mol) Estimation of partition coefficients with Brandsch and In-silico
Molecular weight not available in the database Required for Please enter molecular weight (g/mol) Estimation of partition coefficients with Brandsch and In-silico
Please enter molecular weight (g/mol) Estimation of partition coefficients with Brandsch and In-silico
Welle coefficients a-b-c-d not available in the database Required for
Welle coefficients a (K^-1) c (Å^3) Estimation of diffusion coefficient with Welle b (cm^2*s^-1) d (K^-1)
Ap and Tau not available in the database Required for
Ap and Tau Ap'*: Tau: Estimation of diffusion coefficient with Piringer

11:SML6ソフトはDensityの入力を促してきますが、Default値の1を入力します・ 下の赤破線枠のOKがアクティブ(緑色)になりました。

sml	×
Fill Missing Parameters	
Density not available in the database	Required for
Please enter density * 1 (g/cm^3)	Estimation of diffusion coefficient with Brandsch and In-silico Estimation of partition coefficient
* Density is mandatory for calculation. Default value is 1.	
Log Pow not available in the database	Required for
Please enter log Pow	Estimation of partition coefficients with Polarity scale
Molecular weight not available in the database	Required for
Please enter molecular weight (g/mol)	Estimation of partition coefficients with Brandsch and In-silico
Welle coefficients a-b-c-d not available in the database	Required for
Welle coefficients a (K^-1) c (Å^3) b (cm^2*s^-1) d (K^-1)	Estimation of diffusion coefficient with Welle
Ap and Tau not available in the database	Required for
Ap and Tau Ap'*: Tau:	Estimation of diffusion coefficient with Piringer

12:次に食品疑似溶媒(Simulant)を定義します。 このとき typeは赤破線枠のContact Mediumを選択してください。

✓ · Package 1	Se Article Creation Wizard
	1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction
	Previous Step Next Step >
	Surface: 600 (cm2)
	Surface (cm^2) 600 00
	Article Laver 1 Laver 2
	raini Not Defined
	Thickness (µ 100 100 Add Layer(s)
	Migrant 1 Not Defined 0 0
	Concentration Diffusion Coefficient Partition Coefficient Sol
	Add Migrant(s)
	🚺 Layer (Layer 2) 📓 Migrant 💲 Data
	🔇 🔪 🔀 Copy From Reset Layer 👗 Set to User Defined 📄 Database
	ype: Material Contact Medium
	hickness (µm): 100
	ensity (g/cm^3): N/A
	ayer Abbreviation: Layer 2
	Isterial: Not Defined
6.61	

13: Contact Mediumがアクティブになりました。

Surface (cm^2)	600					00
Article	ſ	Layer 1	Contact Me User Defined			**
	Thickness (u	100	1.667E04			Add Layer(s)
Migrant 1	Not Defined	0	0			0
	C	oncentration	Diffusion Coeff	icient Partition	Coefficient So	
🔏 Add Migra	nt(s)			or Run Prediction		Set-Off
🕷 Layer ((Contact Medi	um 0) 🛛 👗	Migrant	💃 Data		
< >	Х Со	py From	Reset Layer			^
ype:	OMaterial	Contact M	1edium			
nickness (µm):	16667					
ensity (g/cm^3):	N/A					
ayer Abbreviation:	Contact Mediu	im 0				
						~
<						>

14:実測値からDpとKpfを予測する場合に重要なことは Dp(拡散係数)の予測はRealistic Caseを選択しておきます。 ただし実際にはこの選択は不要

• Article Creation W	/izard	Close Wizard	Package 1	
1. Surface 2. Layers 2. Layers Next Step Surface: 600 (cm2)	3. Migrants 4. Data	5. Run prediction	Geometry Rectangular Contact Surface (cm^2): Volume of Contact Medium (cm^3):	600 1000
Surface (cm^2) 600 Article Layer 1 Thickness (µ 100 Migrant 1 Not Defined 0 Concentrat	ini User Defined 1.667E04 0 ion Diffusion Coefficient Partit	tion Coefficient Sol	Width (cm): 10 Height (cm): 10 Length (cm): 10 Surface and mass of contact medium Articles Surfaces (cm^2) Article 1 600	Add Article
Image:	rant Data f diffusion coefficients according to P f au: N/A f f f f f f f f f f f f f f f f f f f	iringer and Interpolation based on Tg Ap*: N/A Ap: N/A 	Total surface of all articles (cm^2): Switch Package in Fittin	600 Ig Mode

15:実測値からDpとKpfを予測する場合に重要なことは Kpf(分配係数)の予測もRealistic Caseを選択しておきます。ただし計算結果には反映されません。

					-
1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction	n	Geometr	у		
Previous Step Next Step		Rectan	gular 🗸		
Surface: 600 (cm2)		Contact	Surface (cm^2):	600	
		Volume o	of Contact Medium (cm^3)	: 1000	
		un hi c)		
	0 m	Width (c	m): 10		
Jirrace (cm··2) 600	o	Length (cm): 10	Add Ar	rticle
Article Layer 1 Contact Me		Lengur	uny. [10	2.	
Thickness (μ., 100 1.667Ε04	Add Layer(s)	Surface	and mass of contact mediu	um by article	
Aligrant 1 Not Defined 0 0					_
	-2	Articles	Surfaces (cm^2)	Mass (g)	
Concentration Diffusion Coefficient Partition Coefficient So	Set Off	Articles	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So	l 🔽 Set-Off	Articles Article	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So Add Migrant(s)	Set-Off	Articles Article	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition So Add Migrant(s) Image: Add Migrant (s) Image: Add Migrant (s) Data User Defined Data Data Data	Set-Off	Articles Article	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So Add Migrant(s) Layer (Contact Medium) Layer (Contact Medium) Layer (N/A	Set-Off	Articles Article	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So	Set-Off	Articles Article	Surfaces (cm^2) 1 600	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So Add Migrant(s) Layer (Contact Medium) Migrant S Data Log Pow: N/A Parameters required for estimation of partition coefficient based on Pow: Other big on the Wife Security Securit	Set-Off	Articles Article	Surfaces (cm^2) 1 600 face face (cm^2):	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So Add Migrant(s) Ø Run Prediction Ø Run Prediction Ø Data User Detined Data Data Data Log Pow: N/A Parameters required for estimation of partition coefficient based on Pow: O Worst Case A: N/A Owerst Case A: N/A B: N/A	Set-Off	Articles Article	Surfaces (cm^2) 1 600 face face (cm^2):	Mass (g) 0	
Concentration Diffusion Coefficient Partition Coefficient So Add Migrant(s) Image: Contact Medium) Image: Contact Medium	Set-Off	Articles Article	Surfaces (cm^2) 1 600 face face face face face face face face	Mass (g) 0 600	

16:Simulant(Contact Metium)の選択はContact Medium Detailから例:<u>Ethanol 10%-foodsimulant</u> を選択します。 次に下段のSimulant枠の User Definedの箇所で<u>Ethanol 10%</u>を再度、定義する必要があります。 この定義をしないと、Simulantは定義されません。(注意!)

• Article Creation Wizard	Package 1
I. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction Previous Step Next Step Surface (cm^2) 600 Article Layer 1 Contact Me Migrant 1 Not Defined 0 Concentration Diffusion Coefficient Partition Coefficient Sol Set-Off Add Migrant(s) Add Migrant 2 Migrant 3 Data ayer Abbreviation: Contact Medium Food group (according to Annex III of Regulation (EU) 10/2011 and some more) Ethanol 10% - Lebensmittelsimulanz (nicht)	Geometry Image: Contact Surface (cm^2): 600 Contact Surface (cm^2): 600 Simulantを選択するとき、 Yodume of Contact Medium (cm^3): 1000 Image: Contact Medium (cm^3): 1000 Width (cm): 10 Image: Contact Medium (cm^3): 1000 Height (cm): 10 Image: Contact Medium (cm^3): 1000 Length (cm): 10 Image: Contact Medium (cm^3): 1000 Surface and mass of contact medium by article Add Article Article 1 600 Image: Contact Medium (cm^2): 1000 Total surface of all artides (cm^2): 1000 Image: Contact Medium (cm^3): 1000
User Defined	, Switch Package in Fitting Mode

17:Simulant(Contact Metium)の選択はContact Medium Detailから例:<u>Ethanol 10%-foodsimulant</u> を選択します。 次に下段のSimulant枠の User Definedの箇所で<u>Ethanol 10%</u>を再度、定義する必要があります。 この定義をしないと、Simulantは定義されません。(注意!)

Article Creation Wizard	Package 1	1
1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction	- Country	
Revious Step Next Step >	Geometry	
Surface: 600 (m2)	Rectangular	
	Contact Surface (cm^2):	600
	Volume of Contact Medium (cm^3):	1000
	Width (cm): 10	
urface (cm^2) 600	Height (cm): 10	Add Article
Article Layer 1 Contact Me	Length (cm): 10	Add Aldde
traini User Defined		
Thickness (μ 100 1.667Ε04	Surface and mass of contact medium	i by article
Migrant I Not Defined 0 0	Articles Surfaces (cm^2)	Mass (g)
Concentration Diffusion Coefficient Partition Coefficient Sol	Article 1 600	0
T Add Migrant/c)		-
🕷 Layer (Contact Medium) 🚺 Migrant 🚺 Data		
thanol 10% - food simulant (non-alcoholic foods or alcoholic foods < 6%) / Ethanol 10% - Lebensmittelsimulanz (nicht	^	
iulant		
er Defined		
er Defined hanol 10%	1	600
		000
ameters required for estimation of partition coefficient based on Pow:		
rameters required for estimation of partition coefficient based on Pow:	Switch Package in Fittin	g Mode

18: Contact MediumにEthanol_10%が定義されました。条件はRealisticになっています。 Realisticは溶出量を予測するときは重要な選択肢ですが、実測値から分配係数を求める場合、 SimulantがEthanol_10%の場合に使用するLog_Powアプローチの直線関係式の補正の数値は 実際には使用していません。Realistic case、Worst caseを選択しても分配係数の予測値は同じになります。

Article Creation Wizard	Package 1
1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction Next Step	Geometry Rectangular
Surface: 600 (cm2)	Contact Surface (cm^2): 600 Volume of Contact Medium (cm^3): 1000
Surface (cm^2) 600 00	Width (cm): 10 Height (cm): 10
Article Layer 1 Contact Me traini Ethanol 10% Thickness (u 100 1.667E04	Length (cm): 10 Add Article
Migrant 1 Not Defined 0 0 Concentration Diffusion Coefficient Partition Coefficient Sol	Articles Surfaces (cm^2) Mass (g) Article 1 600 0
Add Migrant(s)	
Log Pow: N/A	
Parameters required for estimation of partition coefficient based on Pow: O Worst Case A: 1 B: -3 O Base bits Case A: 1 B: -3	Total surface of all articles (cm^2): 600
♥ Realistic Case A: 1.07 B: -1.82	Switch Package in Fitting Mode

19: Polymer層の厚みとして10,000µm(1.0mm)と設定しています。 まだmigrantが設定・定義されていません。 なぜなら実測値からDp.Kpfを予測する場合、Migrantを具体的に定義する必要がないからです。 (言い換えると実験データが示す溶出曲線はどのようなDpとKpfとなるかを予測するにはMigrantの情報が不要だからです。) 参考; Contact Mediumの厚みが1.667E04 µ mとなる理由は 体積1000mLに対して接触面積600cm² 接触面積1cm²当りのContact_Medium(Simulant)の厚みdは d=1000cm³/600cm² 1.667cm ⇒1.667E04 µ m

● Article Creation Wizard	Package 1
1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction Revious Step Next Step Surface: 600 (cm2)	Geometry Rectangular Contact Surface (cm^2): 600 Volume of Contact Medium (cm^3): 1000 Width (cm): 10
Surface (cm^2) 600 Article Layer 1 Contact Me Thickness (µ 100 1.667E04 Migrant 1 Not Defined 10000 0 Concentration Diffusion Coefficient Partition Coefficient Sol	Height (cm): 10 Length (cm): 10 Surface and mass of contact medium by article Articles Surfaces (cm^2) Mass (g) Article 1 600
Add Migrant(s)	
Concentration (mg/kg)	Total surface of all articles (cm^2): 600 Switch Package in Fitting Mode

20:ここでLayer1のDp値はKnownを選択して標準的な拡散係数Dp値 1E-11 を設定します。

Article	Thickness (µ	Layer 1 traini 100	Contact Me Ethanol 10% 1.667E04				Add Layer(s)
Migrant 1	Not Defined	1E-11 oncentration	0.0001 Diffusion Coeffi	cient	Partition Coe	efficient So	ol Cot Off
Add Migra	nt(s) (Layer 1)	👃 Migrant	(Migrant 1)	_∮ Ru	n Prediction Data (Diffus	ion Coeffici	ent)
Contraction Contraction Contraction	Coefficient						
Known		Known Valu	ie				
 Interpolation Piringer Arrhenius 	n based on Tg	Diffusion Coe Set to Defa	efficient (cm^2/s): ult Values	1E	-11 .		

21: ここでLayer2(Contact Medium)のDp値はKnownを選択して標準的な拡散係数Dp値 1E-8 を設定します。 Layere1とLayer2の仮の拡散係数が設定されたら、次にRun Prediction機能により、設定された拡散係数Dpを 使って、実測データと同じ溶出温度と時間を設定して、この条件で推定される溶出試験データを表示させます。

					్రాం
Layer 1 (traini 1 100	Contact Me Ethanol 10% 1.667E04				Add Layer(s)
1E-11	1E-08				
ncentration Di	iffusion Coeffi	cient Par	tition Coef diction	ficient Sc	Set-Off
Known Value	:				
Diffusion Coeff	ficient (cm^2/s): It Values	1E-8			
	Layer 1 traini 100 1E-11 ncentration D 1) Z N Mown Value Diffusion Coef Set to Defau	Layer 1 Contact Me _traini Ethanol 10% 100 1.667E04 1E-11 1E-08 ncentration Diffusion Coeffi () Migrant (Migran Migrant (Migran biffusion Coefficient (cm^2/s): Set to Default Values	Layer 1 Contact Me traini Ethanol 10% 100 1.667E04 1E-11 1E-08 ncentration Diffusion Coefficient Par Run Pre Run Pre Run Pre Run Pre Run Pre Run Pre Set to Deficient (cm^2/s): 1E-8 Set to Default Values	Layer 1 Contact Me _traini Ethanol 10% 100 1.667E04 1E-11 1E-08 ncentration Diffusion Coefficient Partition Coef @ Run Prediction n) Migrant (Migrant 1) Migrant (Migrant 1) Known Value Diffusion Coefficient (cm^2/s): 1E-8 Set to Default Values	Layer 1 Contact Me traini Ethanol 10% 100 1.667E04 1E-11 1E-08 ncentration Diffusion Coefficient Partition Coefficient So @ Run Prediction n) Migrant (Migrant 1) Migrant (Migrant 1) Known Value Diffusion Coefficient (cm^2/s): 1E-8 Set to Default Values

22: ここでLayer2(Contact Medium)のDp値はKnownを選択して標準的な拡散係数Dp値 1E-8 を設定します。 Layere1とLayer2の仮の拡散係数が設定されたら、次にRun Prediction機能により、設定された拡散係数Dpを 使って、実測データと同じ溶出温度と時間を設定して、この条件で推定される溶出試験データを表示させます。

例:40°C_10daysと40°C_4daysの実測データがあるのであれば、40°C_10daysを設定します。

sml								×
🔎 Predi	ctions							
Temperature P	rofiles							
Iso	Non-Iso	Step	Modulated	Shock	Worldwide	STANAG	Customiz	ed Repeated Use
Isothermal Conditio	ns							Time Max 10 day 🗸
								Without Statistics
Temperature =	40 ° C							O Monte Carlo Runs
ΔT =	20 °C							Number of Runs 10
Number of Isotherms :	= 1							Include Sobol Runs
								◯ Fast Distribution
Final Temperature =	40 °C							
								ave 📄 Load
				Nu	mber of steps for	this output: 1	00	✓ OK Cancel

23:40℃_10daysと40℃_4daysの実測データがあるのであれば、40℃_10daysを設定します。 OKをクリックすると、数秒後に下図の40℃_10daysの予測溶出曲線が表示されます。 この溶出曲線はDpが1E-11という既知の値で得られる溶出曲線です。

24: Fitting_Moduleで最も重要な操作:実測値を読み込むためのコマンドは 等温条件・溶出時間の出力のところを右クリックして Import Migration c(t)をクリックする。 実測データ(表)は予め、テキストファイルにしておくこと 実測データはテキストファイルから読み取ります。 メモ帳の例:右端赤線枠内は<u>40°C_0_day時の溶出量 0 g/kg</u>, <u>4_days時の溶出量 11mg/kg</u>, <u>10days時の溶出量 18mg/kg</u>を示す。

25:Fitting_Moduleで最も重要な操作の1つ:実測値を読み込むためのコマンド(import_Migration c(t)をクリックして 該当する測定データのファイルを選択してOKする。

SML6には下記の画面を表示される。

Collumn_1はTimeで単位はdayを選択する。Column_2は溶出量(単位 mg·kg)を選択して OKをクリックする。

sml										_		×
👯 In	nport E	Experir	nental	Migra	tion Pr	ofile						
Import												
Time_days	HPLC1	HPLC2 HPL	C3 Temp									^
	1	1	1	1	1							×
	column 1	column 2	column 3									
1	4	11	19	24	40							
2	10	18	30	34	40							
Time Time is in	column 1	~] [day	/ ~	Concentratio	on on is in <mark>column</mark>	2 ~	mg/kg	~				
						🔁 Open Cust	omized Pro	file	-	ОК	🗙 Car	icel

30: ⊻952 New Open Package Package © Open Package Package	育 収 旅 イ イ に O に ackage ひ Save Package As ate Package い Save All Package Package の Package Details kage	STIMIZE 9 へさ頃	日か衣示される。 Save Article Close Article Concentration Article	Prediction on Prediction of All Articles Prediction	on Close All Articles	Delete All Close Article Outputs All File	
Pac	ckage Article Surface (cm^2) 600 This article is in read-only mode because it has an output or Set-Off Article Layer 1 Contact Me Ethanol 10% Thickness (µ 2000 1.667E04 Migrant 1 PENTAERYT IE-11 1E-08 Concentration Diffusion Coefficient Partition Coefficient S Concentration Diffusion Coefficient Partition Coefficient S Set-Off Add Migrant(e) Add Migrant(e) Migrant (Migrant 1) Data (Diffusion Coefficient) Migrant Coefficient Known Interpolation based on Tg Pringer Arthenius Customized Equation Brandsch Equation Wele Equation Wele Equation		Package 1_KANEKA_Training_2023_05_30 Geometry Rectangular Contact Surface (cm^2): 600 Volume of Contact Medium (cm^3): 100 Width (cm): 10 Height (cm): 10 Surface and mass of contact medium by article Article 1 600		0 Loops Loops per serie 20 0 Loops Loops per serie 20 0 0 Loops Refresh Correlation mtolg IE-6 mtolx IE-6 mtolx IE-6 mtolx IE-6 mtolx IE-6 tolx IE-3 Parameter Name Layer 1-Dp-Known(cm^2/s) IE-11		
	Apply Same Mode to This Layer	Set All to Default Value Ap	ply Same Mode to All Layers	Total surface of all articles (cm^2): Switch Package in Fitt	600 agridode	Close Fitting Mod	e for This Package

31: ① 同様にArticle1をクリックしてアクティブにする。	
<u> ② Layer2(Contact Medium)のDp 1E-08のカラムをクリックすると下段のKnown_ValueのDp値が表示される。</u>	,
── ③ 右端のOptimizeを回する。 □は回帰計算を起動するためのコマンドです。	

Package 1 Article 1	Article 1 (Package 1)	
Iso(40°C, 10d)	Article Creation Wizard	
	1. Surface 2. Layers 3. Migrants 4. Data 5. Run prediction	
	Previous Step Next Step >	
	Surface: 600 (cm2)	
	Surface (cm^2) 600 This article is in read-only	
	Article Layer 1 Contact Me	
	Ethanol 10% Thickness (μ 100 1.667E04	
	Migrant 1 Not Defined 1E-11 1E-08	
	Concentration Diffusion Coefficient Partition Coefficient Solubility	
	Add Migrant(s)	
	Image: Wigrant Migrant (Migrant 1) Image: Second Secon	-
	Diffusion Coefficient	
	Known Known Diffusion Coefficient (cm/2/s): 15-08 Diffusion	
	O Arrhenius	
		F
	Contact Medium (Layr2)のoptimize ⊿は小要で	न 。
	Apply Same Mode to This Layer Set All to Default Value	

32:① 同様にArt ② Layer2(C ③ 右端のOp	ticle1をクリックして ontact Medium)のM timizeを☑する。 ↓	アクティブにする。Partition Coefficientを選択して Aigrant1の設定されている分配係数 1 (1 のままで)をクリックする。 乙は回帰計算を起動するためのコマンドです。
Package 1_KANEKA_Trainin	Surface (cm^2) 600 Article Laye Thickness (µ 2000 Migrant 1 PENTAERYT Concer Add Migrant(s) () Layer (Contact Medium 0) Partition coefficient (Kp)	This article is in read-only mode because it has an output or Set-Off r1 Contact Me Ethanol 10% 1.667E04 I Add Layer(s) Add Layer(s) Add Layer(s) Set-Off Migrant (Migrant 1) Data (Partition Coefficient)
	Known Solubility Van't Hoff	00 Optimize
	Pow Polarity Scale	分配係数1を既知として☑Optimizeする。 Fitting計算の結果 Kp値が1からどの程度変化するか? 実測値からKpを予測する場合、Powアプローチ、極性アプローチの いずれでもない。
		Fitting計算で得られたDp値とPowアプローチによって得られた分配 係数と実測値から得られたKpを比較することは興味深い。

33:① 赤線枠内のLayer1のDp と Contact MediumのKp(分配係数)の2つが表示される。 赤丸枠内の Optimizeをクリックする。 最適化計算(Fitting計算)がスタートします。

Package Properties Output Cale	culation	3	- 8 ×	
New Open Package Package Question Package Package Question Package Package Question Package Package Question Package Package Question Package Package Question Package Package Question Question Package Package Question Question Question Package Package Question Question Package Package Question Question Package Package Question Package Package Package Question Package Package Package Question Package Package Package Package Question Package Package Pack	age Deschage As Package Save All Packages kage Package Details ge Package Details	Prediction on Prediction on This Articles Articles Articles Articles	Delete All Close ticle Outputs All File A	
Package 1_KANEKA_Trainin Su	urface (cm^2) 600 🔒 This article is in read-only mode because it has an output or Set-Off 🛛 😚	Package 1_KANEKA_Training_2023_05_30	^	
Arboe 1 Iso(40°C, 10d)	Add Migrant (%) Concentration Diffusion Coefficient Partition Coefficient S Concentration Diffusion Coefficient S Concentration Coefficient S Concentratio Coefficient S C	Geometry Rectangular 600 Contact Surface (cm^2): 600 Volume of Contact Medium (cm^3): 1000 Width (cm): 10 Height (cm): 10 Length (cm): 10 Surface and mass of contact medium by article Articles Surfaces (cm^2) Mass (g) 2	Correlation The formation of the format	
	Polarity Scale		mtotx 1E-6 mrealstep 1E-3	
			Parameter Name Value Layer 1-Dp-Known(cm^2/s) 1E-11 Contact Medium 0-Kp-Known 1	
()	Set All to Default Value Apply Same Mode to All Layers and Migrants	Total surface of all articles (cm ^2): 600 Gwitch Photogern Fatting Model	Close Fitting Mode for This Package	
6.61				

34: Fitting計算開始する時点で赤線枠にLayer1のDpとLayer2(Contact_Medium)が表示されていること 下図はFitting計算がほぼ終了時近い状態を示しています。 Fitting計算の結果、実測値の2点とフィットする溶出曲線のDpとKpが赤実線枠に表示されます。

35:Fitting計算開始する時点で赤線枠にLayer1のDpとLayer2(Contact_Medium)が表示されていること 下図はFitting計算の終了時を表示しています 最適化計算の結果 Dpは8.09E-12, 分配係数Kpは1.012となっています。

