Introduction to Migration Modelling

オプション機能 Fitting_module Part1

Ap_Valueが得られないとき 溶出試験データ (SML値)を推定するには ⇒3つの選択肢があります。

2023_07_02 Version1.21

Polmetrics

PiringerのAp_Valueや拡散係数Dpが不明の場合の3種類のアプローチ

01:Tg点温度からAp_Valueを推定

ポリマーのガラス転移点温度が判明するなら最も簡単で有用なアプローチです。

予測値の誤差は大きいが溶出曲線が概ねどのようになるかの情報が得られます。 実測データと予測値を比較することができれば、拡散係数のクロスチェックが可能です。

02 : In silico

溶出試験の実測値とIn_silicoによる予測値と比較して精度の点検が可能です。 ポリマーの特性値の違いにより予測結果が大きな影響を受けます。

 03:SML6 オプション機能のFitting moduleにより 実測溶出試験データから拡散係数Dpと分配係数Kpfを算出する。
 Polymer_Aと移行物質_Migrant B(初期濃度mg/kg分子量g/molが既知) 等温条件T℃における溶出試験の溶出曲線の実測値からDpとKpfを求める。

03の溶出試験の実測値からDpとKpfを算出できれば、他の溶出条件でのシミュレーションが可能 ポリマーと移行物質の溶出試験を大幅に省力化することが可能です。 以降はFitting_moduleの説明をします。

溶出試験の実測値データからDpとKpをFitting計算で算出する。

SML	×	SML6.52 (2022_10_30現在)
🛉 License		optionプログラムとしてFitting Moduleがあれば
License Information		溶出試験データから拡散係数Dpと分配係数Kpが算出できます。
Username	sml6train	
Maintenance End Date	2021/12/31	
Compliance Module	Available	Fitting_moduleの操作マニュアルは
Statistics Module	Available	AKISのWebsiteで下記の動画かダワンロートでさより。
Set-Off Function	Available	https://www.akts.com/pub/fitting_03.mp4
Test Cyde and Repeated Use Function	Available	
Fitting Module	Available	4~27ページは上記動画の主要な操作を説明しています。 この動画を見ればFitting moduleの操作手順が理解できます。 先にこのManualを見てから動画を見ていただければ、操作手順の 理解が容易になります
浴出測定テータは 得られる拡散係数と:	<u>あるsimulant,ある</u> 分配係数は実測値	<u>omigrant,ある等温条件</u> で時糸列で最少3点の測定テータがあれば計算可能です。 Iの測定精度に依存します。
測定値にバラツキが	<mark>あるなら</mark> 推定予測	値の精度は測定データ点数に依存します。

https://www.akts.com/pub/fitting_03.mp4

 $A = 48 \text{ cm}^2$

V = 15 ml

K (layer 2 = 0.001) K (layer 3 = 1)

contact area:

KP,F*:

volume of food (F):

この動画はSML6_Fitting_moduleの操作手順をある程度まで理解してから見ると、非常に参考になります。ただし操作手順に必要なコマンドのクリック箇所を1つでも逃すと次ステップの操作が不可能です。クリックする箇所(10点ほど)を良く理解しましょう。

Q Design of the migration cell with 3 layers: the external layers represent the food, the central one the polymer (in that example a PP-sheet, 75 µm thick). The initial mass of migrant is 200ppm. The diffusion coefficient in the PP is assumed with 1e-11 cm²/s. The diffusion coefficients into the food simulant is fixed higher as in the polymer to obtain an immediate distribution of the migrant into the food simulant. Note: thickness of the food layers is not important as only the mass of migrant is used. Information & Inputs: PP plastic material (P): density of P: rho(LDPE) = 0.95d = 0.0075 cm (= 75 µm) thickness: migrants: 120g/mol cP.0 = 200 mg/kg (= ppm)initial concentration:

4

タイトルを 3layers : Food-PP-Food と命名します。 表示画面はSML6 Version6.2ですが、操作手順についてはVersion6.61 (2023_05_28)と共通です。

🔜 🕝 🚺 🍷 💥 🏺 3 layers one side diff. (3 layers) - SML v 6.20		o x
Package Properties Output Calculation		- 🗗 🗙
New Open Open Save Package Save All Packages Package Save All Packages Save All Packages Import Duplicate Article Package Save Package Packag	Close All	~
✓		4
3 layers or 3 layers: Food - PP - Food Migrant 1 Not Defined POLYPROPYL Not Defined 0 200 0 Concentration Diffusion Coefficient Partition Coefficient Solubility	20	Add Layer(s)
	on	
Layer (Layer 2) Copy From Reset Layer Set to User Defined Database Type: Polymer Contact Medium Thickness (µm): 75 Density (g/cm^3): 0.95 Layer Abbreviation: Layer 2 Material: POLYPROPYLENE, homopolymer (PP) Image: Polymer Polymer (PP) Image: Polymer (Polymer (Polymer (PP)) Image: Polymer (Polymer (Polym		
Layer Details		
Molecular Weight (g/mol): N/A Glass Transition Temperature (°C): -20 Log Pow: N/A Material specific constants for estimation of diffusion coefficients according to Piringer • Upper Limit: A*p: 13.1 Tau: 1577 A*p: 7.721 • Realistic Case: A'p: 9.4 Tau: 1577 Ap: 4.021		_
0.457.4:28		• • •

MigrantのFoodへの拡散は速い PPの拡散係数Dpを 1e-11cm²/s Foodへの拡散係数Dpを 1E-8cm2/s とする。 注:事例はLayer1, 2, 3の3Layersになっていますが、Layer1(事例ではLayer1は疑似溶媒層)なので無視して構いません。

Package Properties Output	Calculation		3 layers one side diff. 全商面表示を終了するには	(3 layers) - SML v 6.2	0		- □ × _ æ ×
New Open Package Package Close Package	ckage 🕼 Save Package As te Package 🕌 Save All Packages ackage 😭 Package Details tage	New Open Ir Article Article A	mport Article Stave Article Duplicate Article Close Article Article	Import Initial Concentration	Prediction on This Article Prediction Prediction	Close All Articles All Article Outputs File	Close All
V Slayers one side diff.	Surface (cm^2) 48 Article La No Thickness (um) 10 Migrant 1 Not Defined IE Conc Add Migrant(s) Migrant 2 Migrant (s) Migrant Abbreviation: Migran Migrant: Not Defined Migrant 2 Migrant (g/mol): 120 Density (g/cm^3): N/A Molecular Volume (Å^3): N/A	yer 1 Layer 2 t Defined POLYPROP 0 75 -08 1E-11 rentration Diffusion C t (Migrant 1) py From Rese nt 1 efined	Layer 3 YL Not Defined 100 1E-08 Specify diffusion coefficient in polymer and food layer immediate distribution of food simulant, i.e. Dp(food PP: 1e-11 cm ² /s Food: 1e-8 cm ² /s Melting Point (°C): N/A Button1 Log Pow: N/A	cient Solubility nts (Dp) of migrants in a way to obtain ar the migrant into the d) >> Dp(polymer)		Run Predict	Add Layer(s) Set-Off
▶ 0:56/4:28							• # 1

移行物質migrantの分配係数を特定する場合、左方向から右方向にだけ移行するものとする。 Layer1t/Layer2 のKp=0.001 Layer2/Layer3=1 とする。"1"とはLayer2とLayer3の濃度が等しいという意味です。

🔜 🕜 🕚 🍷 🔆 🔹		3 layers one side diff. (3 layers) - SML v 6.20	- 🗆 X
Package Properties Output	Calculation		- 8 ×
New Open Package Package Close P Pack	ickage 🛃 Save Packa ite Package 🔚 Save All Pac ackage 😭 Package De kage	ge As ckages tails Prediction on Article Prediction on Prediction on This Article Prediction on Prediction on This Article Prediction on Prediction on Prediction on Prediction on File Prediction on Prediction on Prediction on Prediction on Prediction on File Prediction on Prediction on Pred	~
✓	Surface (cm^2) 48		*
3 layers one side diff.	Article	Layer 1 Layer 2 Layer 3 Not Defined POLYPROPYL Not Defined (µm) 100 75 100	Add Layer(s)
	Add Migrant(s)	Concentration Diffusion Coefficient Partition Coefficient Solubility	Set-Off
	Layer à	Migrant (Migrant 1) 💰 Data Specify partition coefficients (KP,F) of migrant in a way that migration happens	
	∧ ∨ X	Copy From Reset Migrant 2 Set to only in one direction (left to right), i.e.	
	Migrant Abbreviation:	Layer 1/2: KP=0.001 Migrant 1 Layer 2/3: KP=1	
	Migrant:	Not Defined	
	Migrant Details		
	Molecular Weight (g/mol):	120 Melting Point (°C): N/A	
	Density (g/cm^3):	N/A Button 1	
	Molecular Volume (Â^3):	N/A Log Pow: N/A	
1:07 / 4:28			• • I

設定したDpとKpによる溶出試験データを予測します。 等温条件20℃で3日間の溶出試験です。

🔜 🕜 👥 🍷 🛠 😑			3 layers one side diff. (3	layers) - SML v 6.2	0				– 🗆 X
Package Properties Output	Calculation								- @ ×
New Open Package Package Close Package	kage 🧭 Save Package As e Package 🙀 Save All Packages ckage 😭 Package Details	New Open Import Article Article Article	E Save Article Duplicate Article Close Article	Import Initial Concentration	Prediction on Pred This Article All	iction on Clo Articles Ar	ose All Delete All rticles Article Outputs	Close All	
Pack	n Prodictions						×		4
	Temperature Profiles								Add Layer(s)
	Iso Non-Iso Isothermal Conditions	Step Mo	dulated Shock	Worldwide	STANAG C	Time Ma	ax 3 day ~	-	6
	Temperature = 20 °C					With Mon	nout Statistics Ite Carlo Runs	ion	Set-Off
	∆T = 20 °C Number of Isotherms = 1					Nur	Include Sobol Runs		
	Final Temperature = 20 °C					○ Fast	t Distribution illy Approach		
						I			
							Sauge Canad		
			0	Number of steps f	for this output: 100		OK Cancel		
_									_
▶ 1:23 / 4:28									• • •

OKをクリックすると1、2秒間で3日間の溶出曲線が表示されます。

溶出結果のIso(20℃3d)を右クリックして<mark>赤破線枠</mark>を表示させ、Import Migration c (t)をクリックします。 ここで実測した溶出試験データ(テキストファイル)をimport(読み込み)します。

Open Customized Profileをクリックします。
 テキストファイルが読み込まれました.colum1は日単位の溶出経過時間,colum2は溶出濃度 mg/kg(PPM)の単位です。
 注:実測データは予めTXTファイル(時間に対する濃度として)を作成しておきます。
 事例では1日おきの溶出量になっています。

Package Properties Outpu	it Calculation		÷	Output - SML v 6.20 画面表示を終了するには Exc 4-を押してください			- □ × - 8 ×
New Open Package Package Close F	ackage 🖌 Save Package ate Package 🖌 Save All Pack Package 😭 Package Deta :kage	As ages New Oper ils Article Artic	h Import Article Artic	re Article plicate Article ose Article Article Import Initial Concentration	Prediction on This Article Prediction	Close All Delete All Articles Article Outputs A File	ise II
✓	Q Q E Temperature : 20 (°C)	Import Import	Experime	ental Migration	Profile	×	^
	C(t) - 3 layers one sid	column 1	column 2			~	1
	30 (6)/6 25	2 0.025 3 0.049 4 0.105	23.535 31.742 45.446				
	5 15 10	5 0.201 6 0.305 7 0.401	62.259 76.341 87.157			Ŷ	
	5 0 0.2	Time Time is in column	1 V iay	Concentration Concentration is in co	lumn 2 v mg/kg v	✓ OK X Cancel	5 2,8 3
▶ 1:39 / 4:28		-	-			_	³ (devs) :

OKをクリックすると12点の溶出量(20℃等温)が時間軸に対してプロットされます。 実測値はoプロットです。

🔜 🔞 👥 🌹 💥 =	Output - SML v 6.20	- 🗆 X
Package Properties Output	t Calculation	- @ ×
New Open Package Package Close P Package Package Package Package	ackage Askage As	~
✓	Q E Image: A transmission of the concentration of the concentraticon of the concentraticon of t	^
	Article Layer 1 Layer 2 Layer 3 Not Defined POLYPROPYL Not Defined Thickness (µm) 100 75 100 Migrant 1 Not Defined 0.189 157.5 33.06	
	□ c(t) - 3 layers one side dift Iso(20°C,3d)	
	160 140 0 120 0 100 0	è
_	0 0 1 2 2 Time (days)	3
▶ 1:43 / 4:28		3 (dava) 1

ここでPackage Detailsをクリックします。(これをクリックしないと次ステップできません。) 赤破線枠のSwitch to Fitting_Modeが表示されます。次にここをクリックしてFitting_modeをActiveにします。

<u>重要事項</u>:赤破線枠のSwitch to Fitting_Modeが表示されない場合 以下2つの原因が考えられます。 Articleの設定が複数個ある場合です。 Fitting_modeはArticleが1個に対してのみ機能します。

🔜 🕜 🚺 🅈 🛪 =	Output - SML v 6.20		- 🗆 X
Package Properties Output	Calculation		- & ×
New Open Package Package Close P Package Package Package	Ackage As Save Package As the Package As the Package As are All Packages Article Artic	e All Delete All Close cles Article Outputs All File	^
 ✓ ☐ 3 layers ✓ ☐ 3 layers one side diff. ↓ Iso(20°C , 3d) 	Q Image: Second state sta	3 layers Geometry Surface / Volume Ratio	
	Article Layer 1 Layer 2 Layer 3 Not Defined POLYPROPYL Not Defined Thickness (µm) 100 75 100 Migrant 1 Not Defined 0.189 157.5 33.06	Surface/volume ratio (cm^-1): Volume of Contact Medium (cm^3): Contact Surface (cm2): 48	3.2 15
	Concentration Dirician Participa Solution	Volume of Contact Medium (cm3):	Add Article
	- Migrant 1 - Layer 3	15 Surface and mass of contact mediu Articles Surfaces (cm^2) 3 layer 48	m by article Mass (g)
	ti 100 tot v tot v	tch to Fitting	Mode
▶ 1:46/4:28	20 0 0 0 0 0 0 0 0 0 0 0 0 0	Total surface of all articles (cm^2):	48 ing Mode
		• MUG I	H System

重要事項:とくにSML6を使い慣れたプロフェッショナル・ユーザは、以下の注意点に留意してください。 繰り返しになりますが赤破線枠のSwitch to Fitting_Modeが表示されない原因はArticleの設定が複数個ある場合です。 Fitting_modeは Articleが1個に対してのみ機能します。

SML6の操作に慣れている方は1つの解析画面にDuplicate機能を使って複数のArticleを設定することにより、さまざまな解析を行います。 しかし、Fitting_moduleを使うときは1Packageに対して、1個のArticleとして解析することが必須条件です。

ここまでは実測データの時間に対する濃度表示でした。次に3 layers one side diff の項目を選択し、 ConcentrationからDiffusion Coefficientに切り替えます。

an	3 layers one side diff. (3 layers) - SML v 6.20 Calculation					×
Rev Open Package Package Package Pack	Image Image <td< td=""><td>e All De cles Artic</td><td>elete All le Outputs File</td><td>Close All</td><td></td><td>~</td></td<>	e All De cles Artic	elete All le Outputs File	Close All		~
✓	Surface (cm^2) 48 This article is in read-only mode because it has an output or Set-Off	1		1		
Iso(20℃,3d)	Article Layer 1 Layer 3 Not Defined POLYPROPYL Not Defined Thickness (um) 100 75 100 Migrant 1 Not Defined 0 200 0 Commentration Diffusion Coefficient Partition Coefficient Solubility					
	Layer (Layer 2) All Migrant Cata			0		-1
	🔇 🔪 🗙 Copy From Reset Layer 💄 Set to User Defined 📄 Database			Loops		
	Type: Polymer Contact Medium	Loops [10	Optimize		
	Thidness (um): 75	mtau	1	Refresh		
	Density (a/m^3): 0.95	mtolg [1E-6	mrealstep	1E-3	
	Lauer Abbraulation: Lauer 2	mtolx	1E-6			
	Material: POLYPROPYLENE, homopolymer (PP)	Parameter	Name		Value	
	Layer Details					
	Molecular Weight (g/mol): N/A Glass Transition Temperature (°C): -20					
	Log Pow: N/A					
	Material energific constants for estimation of diffusion coefficients according to Diringer					
	Upper Limit: A'*p: 13.1 Tau: 1577 A*p: 7.721					_
	Realistic Case: A'p: 9.4 Tau: 1577 Ap: 4.021					
· · · · · · · · · · · · · · · · · · ·						
1:51/ 4:28						w 4

拡散係数Dpは6で説明したようにlayer2は1e-11と Layer1とLayer3は1e-8と設定します。 Fittingモードで計算するには Optimizeをcheckします。ここでDp定数とはポリマー層の拡散係数のことです。 Optimizeを☑することで実測データ曲線を拡散式1E-11の曲線にFitting計算させるための準備をします。

📾 🕜 💶 🌹 🔆 🔹 Package Properties 🔹 Output	Calculation		3 layers one side diff. 全所而表示を終了するにと	(3 layers) - SML v 6.2 # Esc キーを押してください	0					-		× 7 ×
New Open Package Package @ Close Package	ckage 🥻 Save Package As te Package 🙀 Save All Package ackage 😭 Package Details tage	s New Open Imp Article Article Art	Save Article	e Import Initial Concentration	Prediction on This Article Predic	Prediction on All Articles	Close All Articles A	Delete All Article Output: File	Close All			~
Pack ✓ ∰ 3layers ✓ 3layers one side diff. Iso(20°C ,3d)	surface (cm ^2) 48 Article Thickness (µm) Migrant 1 Not Defined Co Add Migrant(6) Diffusion Coefficient © Known O Interpolation based on Tg Piringer O Arrhenius O Customized Equation Brandsch Equation O In-Silco	Layer 1 Layer 2 Not Defined POLYPROPYL 100 75 1E-08 IE-11 ICON Migrant (Migrant 1) Known Value Diffusion Coefficient (cm^2 Set to Default Values	Article This article is in Layer 3 Not Defined 100 1E-08 Partition Coeff Obtained (s): 1E-11	icient Solubility	Prediction	ction or Set-Off	n Loo mt mt Param	ps 10 au 1 lg 1E-6 olx 1E-6 eter Name	0 Loops Optimize Refresh mrealstep	1E-3	lue	
▶ 1:52/4:28	Apply Same Mode to This Layer	Set All to Default Valu	e Apply Same Mode	to All Layers						-1)	\$	1

拡散係数の選択はKnownを選びます。赤破線枠のようにLayer2の拡散係数Knownを表示されます。

次に分配係数(Partition Coefficient)はKnownを選択して、0.001を設定します。 Fitting計算するとき、拡散係数に加えて分配係数として仮の数値を入力します。 この時点でLayer2(ポリマー層)の分配係数が0.001となっています。

🔜 🕜 🕚 🅈 🛠 🔹			3 layers one side diff. (3	layers) - SML v 6.2	0					-	
Package Properties Output	Calculation										- @ X
New Open Package Package @Close Package	ckage 📝 Save Package As te Package 🙀 Save All Package ackage 😭 Package Details age	New Open Impo Article Article Artic	The Save Article	Import Initial Concentration	Prediction on P This Article Predicti	Prediction on All Articles on	Close All I Articles Art	Delete All cle Output File	Close s All		^
✓ 🚍 3 layers	Surface (cm^2) 48		This article is in re	ad-only mode becau	use it has an output or	Set-Off	4		4		^
Slayers one side diff. Iso(20°C , 3d)	Artide Thickness (um) Migrant 1 Not Defined	ayer 1 Layer 2 Not Defined POLYPROPYL 100 75 0.001 Incentration Diffusion Coef	Layer 3 Not Defined 100 1 ficient Partitu ^{lm} Coefficie	ent Solubility	n Prediction	Add Lay	(s)				
	Layer (Layer 2)	Migrant (Migrant 1)	Data (Partition C	oefficient)					0		
	< >							2	Loops	5	
	Partition coefficient ((p)					Loops	10	Optimize		
		Known Value					mtau	1	Refresh		-
L	O Solubility	0.001 [Optimize				mtolg	1E-6	mrealstep	IE-3	-
	O Van't Hoff Pow Polarity scale						Paramete Layer 2-	er Name Op-Known(cr	n^2/s)	1	alue E-11
	Set All to Default Value? App	ly Same Mode to All Layers and	Migrants								
											_
> 2:02 / 4:28							¢			4) († 1

計算に必須な分配係数はLayer3(食品疑似溶媒)でKp=1と設定し、optimizeを☑します。 Kp=1とはポリマー側の移行物質濃度と疑似溶媒側の移行物質濃度が等しい平衡状態を意味します。

🖩 🕜 👥 🕈 🗧		3 layers one side diff. (3 layers) - SML v 6.20	– 🗆 X
Package Properties Output Image: Depict of the second se	Calculation ckage Save Package As ite Package Ki Save All Packages ackage SPackage Details kage	New Open Import Save Article Import Import Import Import Import Open Import Import Import Import Open Import Import	- 6' ×
V Slayers V Javers one side diff. Iso(20°C ,3d)	Surface (cm^2) 43 Article La No Thickness (um) 10 Migrant 1 Not Defined Conc Add Migrant (s)	This article is in read-only mode because it has an output or Set-Off	
	Partition coefficient (Kp Known Solubility Van't Hoff Pow Polarity scale	nown Value Loops 10 Optimize I optimize IE-6 mrealstep Check additional parameters for the fitting procedure, here partition coefficient Kp' in the food layer Parameter Name	1E-3 Value 1E-11
▶ 2:02/4:28	Set All to Default Value? Apply	Same Mode to All Layers and Migrants	• + :

この時点ではFitting計算する前の状態であり、Layer2の拡散係数は1E-11 Layer3のKpは1と入力設定されています。 次にFitting計算をスタートするには 赤線枠のiso(20℃,3d)をクリックします。

このように次ステップ操作をするには専用コマンドがあるのではなく、専用コマンドがクリックできる操作場面を表示させることが必要 です。Articleの設定されている3layers one side diff選択することでコマンド設定画面が表示されます。

Fitting_Moduleの操作手順に関していえることは"次Stepの操作手順はどうするのかを考えなくても必要箇所をクリックできる。ことです。

Fitting計算とは仮に既知のDp値(1E-11)と仮のKp値(Kp=1)で決定された溶出曲線(青色曲線)と実測の溶出曲線を Curve_fittingさせることです。このためには赤破線枠内Parameter nameのところでDp_known:1E-11とKp_Known:1 の2点が設定(表示)されていることが必須条件です。

スライド14~20の操作をマスターしてください。14~20の操作をこのManualを見なくても操作できることが必要です。

ここでoptimizeをクリックします。

